Use of Virtual Control Group for future assessments of effects of pesticides on avian reproduction

<u>Gunther du Hoffmann^{1*}, Diana Temple¹, Thomas George Bean², Carsten Lange³, Ryan Davis¹</u>

¹ Eurofins EAG Agroscience Services, Easton, MD, USA, ² BASF Corporation, Ecotoxicology, Research Triangle Park, NC, USA, ³ BASF Agricultural Solutions, Ecotoxicology, Limburgerhof, Germany; *(<u>presenting author</u>): **Gunther.duHoffmann@AS.EurofinsUS.com**

Background

- Protocols for conducting avian reproduction studies based on the OECD 206 [1] and OCSPP 850.2300 [2] guidelines typically use 144 adult birds and ~2000 offspring during each test.
- There is a growing trend in mammalian toxicity testing towards 'virtual control groups' (VCG) as a way of reducing vertebrate testing, but to our knowledge this has yet to be explored for birds.
- This poster presents a preliminary investigation of whether virtual control groups that are constructed from avian reproduction study historical control data (HCD) be used to reduce bird numbers needed for testing.

Material & Methods

Construction of the VCG from Eurofins' HCD

- Two anonymized mallard reproduction studies were provided for the preliminary assessment of use of VCG in avian repro studies.
- 27 mallard repro studies from the Eurofins HCD database were used to construct the VCG:
 - 1 study with 10 replicates
 - 3 studies with 15 replicates
 - 10 studies with 16 replicates
 - 13 studies with 18 replicates
 - \rightarrow total of 447 controls

Endpoints evaluated

- 12 of the 15 endpoints required by US EPA were evaluated:
 - 1. Cracked eggs of eggs laid
 - 2. 14-d survivors of hatchlings
 - 3. 14-d survivor weight
 - 4. Eggs laid/hen/d
 - 5. Eggshell thickness
 - 6. Adult food consumption
 - 7. Hatchlings of egg set
 - 8. Hatchling weight
 - 9. Terminal female bodyweight
 - 10. Terminal male bodyweight
 - 11. Viable embryos of eggs set
 - 12.3-wk live embryos of viable embryos

NOEC as reported in the final report (Comparison with concurrent control)

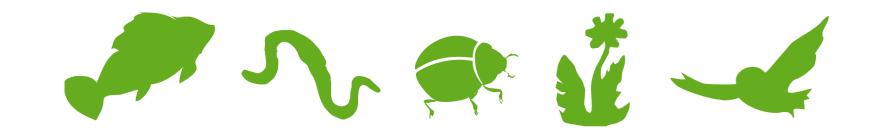
- Study 1: NO NOEC determined based on statistical significance at all treatment levels for *(Endpoint #2) 14-d survivors of hatchlings* and *(#5) Eggshell thickness.*
- 2: The NOEC Study was the determined mid to be treatment concentration based effects (#2) 14-d on on survivors of hatchlings and (#4) **Eggs laid/hen/d** at the highest treatment concentration.

Comparison against VCG

- 1000 studies were recreated for Study 1 and Study 2, each time replacing the control data with a VCG through systematic random selection of 18 replicates from the HCD which were resampled with replacement.
- Four statistical tests were run on each of the 12 endpoints for the 1000 studies comparing against the VCG:
 - a) Williams's Multiple Comparisons Test
 - b) Jonckheere-Terpstra Step-Down Test
 - c) Dunnett's Multiple Comparisons Test
 - d) Wilcoxon Test with Bonferroni-Holm Correction

Quantal and conditionally quantal data were arcsine square root transformed to make the data pseudo-continuous.

Conclusion


- Over 92% of simulated VCGs generate same conclusion for study 1.
- Over 96% of simulated VCGs generate same conclusion for study 2 for eggs laid and a lower endpoint by one dose group for 14-d survivors of hatchlings, but outcomes varied by statistical test from 0% to 94% of simulated studies.
- Encouragingly, statistical reanalysis using a VCG in place of the concurrent control showed

Next steps

- Larger scale industry collaboration to conduct a more comprehensive assessment of use of VCG.
- Assessment for both bobwhite quail and mallard.
- Evaluation of how the VCG could be used for BMD₁₀ derivation.
- Determine suitability of smaller number of controls to evaluate

consistent and reliable results, providing robust statistical power and often providing a more conservative finding than the concurrent study control alone.

- Use of VCG in place of concurrent control could save up to 36 animals per test (i.e. 18 pairs) and tens of offspring for reproductive endpoints.
- That said, while the natural biological variability can be assessed using the HCDS, a smaller concurrent control may still be needed given the importance to assess validity criteria to ensure guideline compliance.
- 3-4 control pairs (6-8 birds) may be sufficient to compare against the HCDS to validate the use of the VCG.

biological variability among batches of birds and for demonstrating validity criteria have been met.

We create chemistry

References

[1] OECD (1984) Test Guideline 206: Avian Reproduction Test.[2] U.S. EPA (2012) OCSPP 850.2300: Avian Reproduction Test.