Agro

FertilizationManager

field 3 arable

Eurofins Agro
Binnenhaven 5
NL - 6709 PD Wageningen
The Netherlands
T sampling: Klantenservice Agro: 0888761010
T customerservice: +31 (0)88 876 1010
E customerservice@eurofins-agro.com
I www.eurofins-agro.com

Example report P.O. Box 170 6700 AD WAGENINGEN The Netherlands

 Analysis
 Investigation/ordernr:
 Date sampling:
 Date report:

 700443/003709395
 01-11-2023
 14-11-2023

Results		Unit	Result	Target value	low	rath.low	good	rath.high	high
	Total N stock	kg N/ha	5810	5450 - 8170					
Chemical	C/N ratio		14	13 - 17					
	N-supplying capacity	kg N/ha	85	95 - 145					
	S-plant available	kg S/ha	19	20 - 30					
	Total S stock	kg S/ha	1435	1190 - 2215					
	C/S ratio	. 0"	56	50 - 75					
	S-supplying capacity	kg S/ha	24	20 - 30					
	P-plant available	kg P/ha	4,3	6,0 - 10,0					
	P-soil stock	kg P/ha	395	510 - 655					
	K-plant available	kg K/ha	295	235 - 365					
	K-soil stock	kg K/ha	495	450 - 755					
	Ca-plant available	kg Ca/ha	105	240 - 560					
	Ca-soil stock	kg Ca/ha	8535	7695 - 9790		_			
	Mg-plant available	kg Mg/ha	275	235 - 365					
	Mg-soil stock	kg Mg/ha	420	460 - 765		_			
	Na-plant available	kg Na/ha	120	50 - 100					
	Na-soil stock	kg Na/ha	92	62 - 103					
	Chloride	kg Cl/ha	67	43 - 63					
	Si-plant available	g Si/ha	26430	20030 - 86780					
	Fe-plant available	g Fe/ha	6880	83 <mark>40 - 15</mark> 020		_			
	Zn-plant available	g Zn/ha	1400	1670 - 2500		_			
	Mn-plant available	g Mn/ha	11950	19360 - 26700					
	Cu-plant available	g Cu/ha	70	135 - 215		ı			
	Co-plant available	g Co/ha	20	15 - 25					
	B-plant available	g B/ha	605	535 - 735					
	Mo-plant available	g Mo/ha	< 10	330 - 16690					
Physical	Se-plant available	g Se/ha	9,0	12 - 15					
,	Acidity (pH)		5,2	5,7 - 6,3		1			
	C-organic	%	2,41						
	Organic matter	%	5,1						
	SOC/SOM ratio		0,47	0,45 - 0,55					
	Carbonate lime	%	0,2	2,0 - 3,0	•				
	Clay (<2 µm)	%	3						
	Silt (2-50 μm)	%	9						
	Sand (>50 µm)	%	83						
	Clay-humus (CEC)	mmol+/kg	152	> 128					
	CEC-saturation	%	94	> 95		+			
	Ca-saturation	%	84	80 - 90		+			
	Mg-saturation	%	6,8	6,0 - 10		+			
	K-saturation	%	2,5	2,0 - 4,0					
	Na-saturation	%	0,8	1,0 - 1,5		_			
	H-saturation	%	< 0,1	< 1,0					
	Al-saturation	%	< 0,1	< 1,0					

Page: 1
Total number of pages: 7
Report-Id:
700443/003709395, 26-07-2023

This report has been released under the responsibility of Ir. M.P. Voogt, Business Unit Manager Arable Farming, All our services are covered by our General Conditions. These conditions and/or the specifications of the analysis methods will be sent to you on request. Eurofins Agro Testing Wageningen BV is not liable for any adverse consequences resulting from the use of test results and/or recommendations supplied by us or on our behalf.

Results		Unit	Result	Target value	low	rath.low	good	rath.high	high
	Electric Conductivity	mS/cm 25°C	0,86	0,60 - 1,2					
		Unit	Result	Target value	low	rath.low	good	very good	
	Soil crumbling Soil slaking Risk on wind erosion	score score score	10,0 8,0 5,2	6,0 - 8,0 6,0 - 8,0 6,0 - 8,0					
		Unit	Result	Target value	low	rath.low	good	rath.high	high
Dielegieel	Moisture retention cap.	mm	48						
Biological	Microbial biomass Microbial activity Fungal/bacterial ratio	mg C/kg mg N/kg	120 54 0,3	255 - 765 35 - 58 0,6 - 0,9					

Fertilisation recommendations

The result is compared with an agricultural target value and is categorized as low, rather low, good, rather high high. This is not an appreciation as meant in ISO 17025 (par. 7.8.6).

Legislation

The fertilisation recommendations aim to achieve an agronomical optimum yield and crop quality. The recommendations do not take any legal restrictions into consideration.

ears)

_					
R۵	COL	mm	nan	h	

Recommend. Unit

Soil-based reco	mmenda	tion (for the coming 4 ye
Phosphate (P ₂ O ₅)	265	kg/ha
Potassium (K ₂ O)	70	k <mark>g/h</mark> a
Calcium (CaO)	140	kg/ha
Magnesium (MgO)	125	kg/ha
Lime (nw)	2170	kg/ha
Effective OM	7060	kg/ha

When recommendations are high, it is adviced to split the amount during the 4 years, for instance supply half the amount biannially. The soil based recommendation is meant to level the soil stocks of phosphorus, potassium, calcium and magnesium to the required amounts.

The lime gift is based on an optimal pH of 6,0 For every tenth increase in pH a lime gift is required of 270 kg/ha.

The amount of effective organic matter needed is calcutated for a 4 year period. At the organic matter balance the yearly application of organic matter is calculated.

Recommend.		Crop	Culture	Recommendation
	Crop-based recom	nmendation (annual)		
in kg/ha	Nitrogen (N)	Ware potatoes Spring-sown onions Sugarbeet Winter wheat		236 88 144 200
	Sulphate (SO ₃)	Ware potatoes Spring-sown onions Sugarbeet Winter wheat		0 0 5 35
	Phosphate (P ₂ O ₅)	Ware potatoes Spring-sown onions Sugarbeet Winter wheat		85 55 85 60
	Potassium (K ₂ O)	Ware potatoes Spring-sown onions Sugarbeet Winter wheat		215 105 125 95
	Calcium (CaO)	Ware potatoes Spring-sown onions Sugarbeet Winter wheat		75 120 70 35
	Magnesium (MgO)	Ware potatoes Spring-sown onions Sugarbeet Winter wheat		0 0 0 0
	Sodium (Na ₂ O)	Ware potatoes Spring-sown onions Sugarbeet Winter wheat		65
	Zinc (Zn)	Ware potatoes Spring-sown onions Sugarbeet Winter wheat	A),	0 0,5 0
	Manganese (Mn)	-		See the explanation.
	Copper (Cu)	Ware potatoes Spring-sown onions Sugarbeet Winter wheat		0,25 0,25 0,25 1,50
	Boron (B)	Ware potatoes Spring-sown onions Sugarbeet Winter wheat		0 0 0 0

Crop based recommendation

The crop-based recommendation is based upon the crop needs, average yields and climatic conditions and is corrected for soil nutrient stocks and the soil supplying capacity. During the growing season the SoilCropMonitor can be used for fertilization adjustments.

Explanation

The results and/or the recommendations of this analysis are valid until 2027

For more information please use the following link: https://www.eurofins-agro.com/en/soil-analysis-explanation

The soil based recommendation aims to maintain the soil nutrient stocks. The K, Ca and Mg recommendation will optimize the balance at the cation-exchange-capacity (CEC). It is adviced to spread the soil based recommendation for nutrients and lime application across a 4 year period. When you have applied the soil based recommendation a new soil based analysis can be used to update the concentration of the nutrient stocks.

The crop based fertilization will feed the crop and improve its quality. Due to higher/lower yields and possible losses (e.g leaching) the amount of plant available nutrients can fluctuate. Therefore, we advise you to carry out a crop based analyis (Culture analysis) to determine the actual amount of available nutrients and to update the fertilization recommendations.

Look carefully at the appreciation of the nutrients on page 1. If the target values indicate that one or more nutrient quantities are very low, consult your advisor to level these quantities.

We have assumed the following yields, when calculating the crop based recommendations:

Ware potatoes 47,0
Spring-sown onions 49,0
Sugarbeet 82,0
Winter wheat 9,0

When your yield differentiates from the above, it is recommended to adjust your fertilization accordingly

Nitrogen:

The N recommendation relates to an annual dose. If possible, we recommend splitting this N dose into several applications. You can use our SoilCheck soil test in season to determine whether subsequent applications are necessary. This test measures the plant-available N (mineral N) in the soil among other things.

Sulphur:

Sulphur (S) is released by the degradation (mineralisation) of organic matter or manure. This mineralisation is performed by soil organisms. Soil organisms are not very active under colder conditions, which means not much S is released from the soil early in the spring. Therefore, it is sensible to fertilise with S for many early crops, even if the soil content is good or high.

Phosphate:

P-supplying capacity is 21 . The target range is 17 - 27 The P-buffering capacity indicates whether the P-soil stock is high enough to maintain the level of plant available P. When the buffering capacity (buffering power) is low, the plant available P will not remain on level during the growing season: it will decrease.

Potassium:

Calcium:

Fertilization with calcium may benefit the soil structure. You can reduce the calcium soil based recomendation with the amount of calcium applied with the lime.

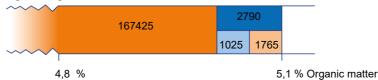
Manganese:

Manganese deficiency is to be expected. During periods of rapid growth, please apply foliar fertilizers containing Manganese.

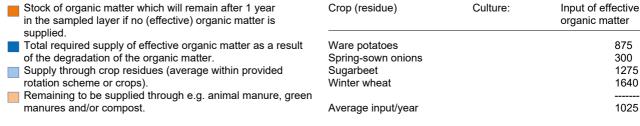
Lime:

Give the lime prior to the most lime needing crop. Note: with liming calcium and magnesium can be added.

Magnesium:


You can reduce the magnesium soil based reccomendation with the amount of magnesium applied with the lime.

Soil life:


The biological soil fertility is measured by 3 characteristics, the microbial biomass, the microbial activity, and the fungal/bacterial ratio

The acknowledgement of the measured results is based upon the amount of organic matter. There is not a recommendation given for the measured characteristics. On the basis of research projects there will be more information available.

Organic matter Figure: Organic matter balance

Yearly breakdown rate (percentage) of the total organic matter content (%): 1,6

In case of cereals we assume removal of straw.

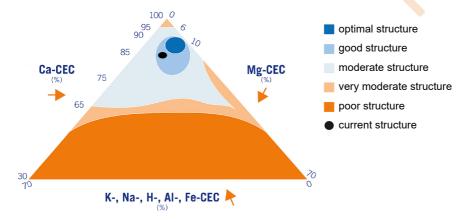
For increasing the soil organic matter content by 0.1%: 3340 kg effective organic matter per hectare is needed.

Figure: Quality of the organic matter

Organic matter consists primarily of C, N, P, S. If the organic matter contains relatively high amounts of N and/or S, this makes it attractive to soil organisms. Soil organisms happily eat this organic matter. N and S are released in the process and the amount of organic matter decreases slightly (dynamic organic matter). Organic matter can also contain a lot of C. This is generally less attractive to soil organisms (bacteria). As a result, the organic matter is not consumed as quickly by the soil organisms; making the organic matter more stable. Stable organic matter contributes - among other factors - to the workability of the soil and the looseness. Dynamic organic matter contributes primarily to the release of N and S and is therefore a source of these nutrients for the crop. The quality of the organic matter can be changed (gradually) by paying attention to the properties of soil improvers such as animal manure, compost and crop residues.

Physical

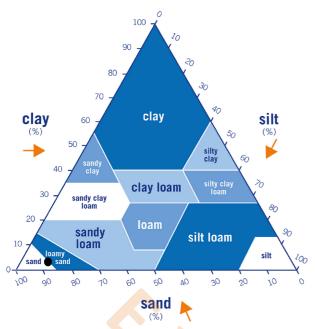
The assessment of soil structure is based on the Ca-CEC, K-CEC, and Mg-CEC ratio. Actual soil structure is - of course - not merely depending on ratio, but also on weather conditions, moisture condition of the soil, and the weight of the machinery.


Figure: Structure triangle

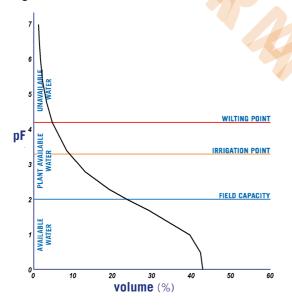
Page: 5

Report-Id-

Total number of pages: 7


700443/003709395, 26-07-2023

his report has been released under the responsibility of Ir. M.P. Voogt, Business Unit Manager Arable arming. All our services are covered by our General Conditions. These conditions and/or the bedications of the analysis methods will be sent to you on request. Eurofins Agro Testing (ageningen BV is not liable for any adverse consequences resulting from the use of test results nd/or recommendations supplied by us or on our behalf.


Physical Figure: Texture triangle

Besides clay, the silt and sand fractions are presented as well. Clay is smaller than 2 micrometer (μm), silt particles are 2-50 μm and sand particles are larger than 50 μm . The relative distribution of soil particles is used to estimate the risk of slaking. Slaking causes the soil pores to be clogged with smaller particles and degrades soil structure. The risk of slaking is greatest at 10-20% clay.

Soil crumbling score is: good, however the evaluation of soil crumbling status is also depending on crop type. Considering the results, the chance of soil slaking is small.

Figure: Water retention curve

The amount of plant available water in the sampled layer is 48 mm. This is the maximum amount you should irrigate. All excess irrigation will drain off the parcel or will sink to deeper layers.

Field capacity (pF 2,0): 24,0 % moisture Irrigation point (pF 3,3): 9,1 % moistur e Wilting point (pF 4,2): 4,9 % moistur e

Crops have difficulties to obtain water when the actual moisture level is below pF 3,3. When you are able to measure the moisture level, start with irrigation if the moisture content of the parcel is at 9,1 % and irrigate 37 mm.

The actual moisture level can be measured by using a soil moisture sensor, or collect soil from ten spots in the parcel. Measure the weight of the moist soil and the weight after 24 h drying. The difference between moist and dry soil is an indication of the moisture level of the parcel.

Contact & info Soil layer: 0 - 25 cm

Sample was taken by: Eurofins Agro, Monsternemer Contact sample taking: Klantenservice Agro: 0888761010

Sampling method: W-pattern, at least 40 sub samples, according to Eurofins Agro standard MIN 1000

If the following information is shown in the reports, this information may have been provided by the client and may affect the valuation, advice and/or analysis result: sampling depth, crop, culture.

Method Results analyses

	Result	Unit	Method	RvA
Total nitrogen stock	1740	mg N/kg	Em: NIRS	Q
S-plant available	5,6	mg S/kg	Em: CCL3 (Gw NEN 17294-2)	
Total sulphur stock	430	mg S/kg	Em: NIRS	Q
P-plant available	1,3	mg P/kg	Em: CCL3 (Gw NEN 15923-1)	Q
P-soil stock	27	mg P ₂ O ₅ /100 g	PAL1: Gw NEN 5793	Q
P-soil stock	12	mg P/100 g	PAL1: Gw NEN 5793	Q
K-plant available	89	mg K/kg	Em: CCL3 (Gw NEN 17294-2)	
K-soil stock	3,8	mmol+/kg	Em: NIRS	
Ca-plant available	0,4	mmol Ca/l	Em: NIRS	
Ca-soil stock	136	mmol+/kg	Em: NIRS	
Mg-plant available	83	mg Mg/kg	Em: CCL3 (Gw NEN 17294-2)	
Mg-soil stock	10,3	mmol+/kg	Em: NIRS	
Na-plant available	36	mg Na/kg	Em: CCL3 (Gw NEN 17294-2)	
Na-soil stock	1,2	mmol+/kg	Em: NIRS	
Chloride	2,0	mg Cl/100 g	Em: WTR9	
Si-plant available	7920	μg Si/kg	Em: CCL3 (Gw NEN 17294-2)	
Fe-plant available	2060	μg Fe/kg	Em: CCL3 (Gw NEN 17294-2)	
Zn-plant available	420	μg Zn/kg	Em: CCL3 (Gw NEN 17294-2)	
Mn-plant available	3580	μg Mn/kg	Em: CCL3 (Gw NEN 17294-2)	
Cu-plant available	21	μg Cu/kg	Em: CCL3 (Gw NEN 17294-2)	Q
Co-plant available	6,6	μg Co/kg	Em: CCL3 (Gw NEN 17294-2)	Q
B-plant available	181	μg B/kg	Em: CCL3 (Gw NEN 17294-2)	
Mo-plant available	< 4	μg Mo/kg	Em: CCL3 (Gw NEN 17294-2)	
Se-plant available	2,7	μg Se/kg	Em: CCL3 (Gw NEN 17294-2)	
Acidity (pH)	5,2		Em: NIRS	
C-organic	2,41	%	Em: NIRS	Q
Organic matter	5,1	%	Em: NIRS	Q
C-inorganic	0,03	%	Em: NIRS	
Carbonate lime	0,2	%	Em: NIRS	
Clay (<2 µm)	3	%	Em: NIRS	
Silt (2-50 μm)	9	%	Em: NIRS	
Sand (>50 μm)	83	%	Em: NIRS	
Clay-humus (CEC)	152	mmol+/kg	Em: NIRS	
Electric Conductivity	0,86	mS/cm 25°C	Em: NIRS	
Microbial biomass	120	mg C/kg	Em: NIRS	
Microbial activity	54	mg N/kg	Em: NIRS	
Fungal biomass	23	mg C/kg	Em: NIRS	
Bacterial biomass	91	mg C/kg	Em: NIRS	
Bulk density	1335	kg/m ³	Em: NIRS	

The values stated on page 1 and 2 under 'Result' are calculated from the above mentioned analysis results.

Method accredited by RvA

Em: Method Eurofins Agro, Gw: Equivalent of, Cf: In conformity with

The analyses were done at Eurofins Agro, Wageningen (NL).

The results relate exclusively to the sample taken and received by Eurofins Agro, and to the material processed on 02-11-2023, and therefore to the sample analysed. For a detailed description of the sampling and analysis methods used, visit www.eurofins-agro.com

